AVIA AI Chatbot

Client: AVIA

Role: Product Design Director

Skills: Product Design, UX Research, Information Architecture, Visual Design, Team Leadership, DesignOps

Team: Product Design Director (me), Product Designer, UX Researcher, Product Manager

Timeframe: 3 months


The Problem

Health professionals urgently need timely research for digital strategies and product insights to enhance patient experiences and cut costs. The challenge is navigating the complexities of digital transformation to stay competitive in the evolving healthcare landscape.

The Solution

I spearheaded a 3-month initiative as Product Design Director, leading the creation of an AI Chatbot powered by ChatGPT and AVIA’s proprietary content. The result is a seamless interface offering accessible insights into digital strategies and specific product categories, empowering professionals for informed decision-making in healthcare.

Understanding the User

To ensure our AI Chatbot met user needs, I conducted interviews with 15 health system employees as part of a “Voice of the Customer” project. These conversations provided invaluable insights into their organization’s tech selection approach, guiding our design process to better serve their needs.

We shared an outline of the tech selection process and asked them to compare it with how things work in their organization.


In our exploration phase, we dived into competitor research while also creating a Human-Centered AI canvas. It wasn’t just about understanding the competition; we aimed to ground our approach in a deep understanding of human needs, and the canvas played a huge role in guiding our journey.

How might we leverage AI to simplify research for healthcare professionals, improving digital strategies, patient experiences, and operational efficiency?

Competitor Research

We conducted competitor research, thoroughly examining platforms such as ChatGPT, Gemini, Chatsonic, and Claude to gain valuable insights and inform our approach to creating a distinctive AI Chatbot.

Human-Centered AI canvas

With our Human-Centered AI canvas, we made brainstorming a team effort, blending insights from real conversations with health system professionals. It guided us to create an AI Chatbot that truly understands and meets their needs.


Next, I led our team in an ideation session, where we got creative and used affinity mapping to organize diverse ideas. This collaborative process laid the groundwork for our AI Chatbot design.


Beginning with basic Figma wireframes, we tested our ideas using a low-fidelity prototype. These initial outlines served as our starting point, guiding us through the testing and refining phases of the design process.

Prototyping and testing

I teamed up closely with our engineers to create a quick beta version, tested with our product advisory group. Users loved how helpful and efficient it was for research, even preferring it over consulting with professionals for quicker answers. This positive response showed our collaboration hit the mark in meeting user needs.

The Final Design

Listening to our beta users, we fine-tuned designs to better address their organizational needs, simplify pre-defined prompts, and improve the user experience of saving and deleting prompts. Working closely with our engineering team, we made the AI Chatbot even more user-friendly.

Save and edit prompts for personalized interactions.

Quick links for common questions to streamline user experience.

Thumbs up/down feedback option for quick and easy response evaluation.

Org preferences section to train the AI on organization-specific answers, enhancing customization and relevance.

Introduced a friendly duck image named “Hugo” to personify the AI brain, adding a touch of personality to the final design.


Our journey through beta testing has yielded encouraging outcomes, marked by positive feedback and strong interest from potential subscribers. 

Positive feedback

from our second round of beta testers

Intent to purchase

verbally confirmed from several testers

Reached goal of over 80% of remote monitoring companies to claim and complete their profile within the first quarter after launch.